

 Navigation

 	
 index

 	GNU Mailman bundler 3.0.0 documentation

Mailman bundler - GNU Mailman, Postorius and HyperKitty

This package uses Buildout [http://www.buildout.org] to install GNU Mailman [http://www.list.org], its admin interface
Postorius [https://launchpad.net/postorius], and its archiver HyperKitty [https://hyperkitty.readthedocs.org].

Those packages are copyrighted by the Free Software Foundation [http://www.fsf.org/] and
distributed under the terms of the GNU General Public License (GPL) version
3 [http://www.gnu.org/licenses/quick-guide-gplv3.html] or later.

The Mailman home page is http://www.list.org, and there is a community driven
wiki at http://wiki.list.org.

Installation

Mailman is written in Python which is available for all platforms that Mailman
is supported on, including GNU/Linux and most other Unix-like operating
systems (e.g. Solaris, *BSD, MacOSX, etc.). Mailman is not supported on
Windows, although web and mail clients on any platform should be able to
interact with Mailman just fine.

Mailman requires at least Python 3.4, which may or may not be shipped by your
operating system. If only earlier versions of Python are available, you must
install Python 3.4 (or later) before following this tutorial. To do that,
follow the procedure in the Python documentation [https://docs.python.org/3/].

You must also have Pip for Python 3.4 installed. If you’re using your
distribution’s package manager, it probably comes in a python3-pip package
(or python3.4-pip, or something similar). Otherwise you’ll have to
download it from PyPI [http://pypi.python.org/pypi/pip].

Even if Mailman 3 runs on Python 3, the web interfaces and the commands in this
procedure run on Python 2.7, so make sure your system Python version is 2.7.

To use Mailman, you must install and configure a Mail Transfer Agent (MTA)
supported by Mailman. To this day, Postfix [http://www.postfix.org/] and Exim [http://exim.org/] are supported.
Installing and configuring an MTA is beyond the scope of this documentation;
for assistance please refer to your specific operating system and preferred MTA.
This package only provides Mailman configuration examples for Postfix.

If you haven’t already done so, download the sources of the Mailman bundler
with the command:

bzr branch lp:mailman-bundler

Install Virtualenv (the Python 2.7 version), preferably using your
distribution’s package manager.
Now switch to a dedicated Mailman user. Setup a virtualenv for the Mailman
suite and activate it with the following commands:

virtualenv venv
source venv/bin/activate

In the bundler directory, open the mailman_web/development.py file, look
for the SECRET_KEY parameter and set something random.

You will need to have GCC installed on your machine to install the dependencies.
If you have installed Python using your operating system’s packages, make sure
you have also installed the development headers. They are usually shipped in a
package with the -devel or -dev suffix, for example python-devel
and python3-devel. You need the headers for both Python 2 and Python 3.

In the mailman-bundler directory, install and run buildout:

pip install zc.buildout
buildout

You will also need to install the LESS CSS compiler [http://lesscss.org/]. It is usually packaged
by your distribution, on Fedora the package is named nodejs-less, so you
can install it with:

sudo yum install nodejs-less

On Debian and Ubuntu, this is available in the node-less package, which
you can install with:

sudo apt-get install node-less

Now initialize Django’s database:

./bin/mailman-post-update

Now create an initial superuser to login as:

./bin/mailman-web-django-admin createsuperuser

This is the user you’ll use to login to Mailman’s web interface (Postorius).

Run the services

Start mailman:

./bin/mailman start

Run Django (the web interfaces server):

./bin/mailman-web-django-admin runserver &

By default, the web interface are available at:

	http://127.0.0.1:8000/mailman3 for Postorius

	http://127.0.0.1:8000/archives for HyperKitty

Configure Postfix

The deployment/postfix-main.cf will contain a few lines that you must add
to your main Postfix configuration file (usually /etc/postfix/main.cf).

Add full qualified domain name of list(s) to mydestination:

mydestination = lists.mydomain.com mydomain.com

Make sure postfix has read access to the *.db files in var/data (it
won’t have access by default). There are two ways to do that: you can change
the permissions of those files to world-readable or add postfix to your user’s
group.

If you have SELinux enabled, make sure it is not blocking access to those
files. Their type should be etc_aliases_t. You can set this type
permanently using the semanage fcontext command.

Finally, restart postfix:

service postfix restart

Use Mailman

Create a domain

	Open your browser and navigate to Postorius (http://127.0.0.1:8000/mailman3)

	Go to Settings -> “New domain”

	Enter a mail host: lists.example.com

	Enter a web host: http://lists.example.com

Create a mailing-list

	In Postorius, go to “Lists” and click “New list”

	Enter list name, e.g. test

	Choose the mailhost

	Define the list owner (defaults to domain contact)

	Choose whether to advertise list

	Enter description

	Save list.

On the lists’ front page, add a moderator in the corresponding category.

Subscribe to your mailing-list

To subscribe, send an email to test-request@lists.example.com with subject
subscribe.

To unsubscribe, send an email to test-request@lists.example.com with
subject unsubscribe.

Setting up for production

For a production setup, you first need to change the deployment parameter to
production in buildout.cfg and run buildout again. It will
regenerate the scripts in bin and the contents of the deployment
directory.

If you want to use a webserver module to serve Postorius and HyperKitty (like
Apache’s mod_wsgi), make sure your current directory is accessible by its user.
On some distributions, user directories in /home are not accessible by the
Apache user.

It is also very strongly recommended to use an full-blown database server for
Mailman, Postorius and HyperKitty. If you choose PostgreSQL, you’ll need the
corresponding drivers, which can be installed with:

pip install psycopg2

This will require the PostgreSQL headers to compile, just install them from
your distribution’s package manager.
You also obviously have to start your database server, and create the databases
and database users you are going to use.

The connection parameters to the database can be configured in mailman.cfg
for Mailman, and production.py for Postorius and HyperKitty. See the
DATABASES setting value.

Also note that HyperKitty uses a database and a full-text search index. The
backend used for this search engine is configured in the
HAYSTACK_CONNECTIONS variable of the settings file. Refer to the
Haystack documentation [http://django-haystack.readthedocs.org/en/latest/settings.html] for the detailed settings available to configure the
full-text search engine.

If you want to make modifications to this production.py file, it is
recommended to create a settings_local.py file in the same directory and
put your variables there. This file will be sourced by the production.py
file and variables will be overrrided. This way, you can easily merge changes
in the production.py file when you upgrade the package.
Only put in settings_local.py the variable that you want to override.

The production.py file also configures two variables pointing to
directories that must be created (probably as root if you keep the default
values) and given the correct permissions.

	the STATIC_ROOT variable, pointing to a directory where static files will
be collected to be served directly by your frontend webserver, must be owned
by your current user

	the HAYSTACK_CONNECTIONS.default.PATH variable, pointing to a directory
where the fulltext search engine files will be stored, must be readable and
writable by your webserver user.

Finally, there are some other variables that need to be set in
production.py for production serving. You must set the hostname your
website will respond to in ALLOWED_HOSTS and BROWSERID_AUDIENCES. Check
out the links in the comments above those variables in production.py for
information on their expected value.

Also, if you’re using a proxy to serve your website, there may be additional
variables that you need to set in production.py, such as
USE_X_FORWARDED_HOST and SECURE_PROXY_SSL_HEADER.

After settings those variables, re-run the bin/mailman-post-update script,
it will initialize the databases and collect the static files for direct
serving.

In the deployment directory, you will find configuration files that can be
useful for a production setup.

The Mailman service

The mailman3.service file is an example Systemd service file to run Mailman
as a system daemon. You need to edit this file to set the User and
Group values to your current user (the one you ran buildout as), or you
will have to change the permissions on the var subdirectory.

If you run buildout again, this file will be overwritten, and you will have
to set the User and Group values again.

We currently have no SysVInit service file, but it should be easy to write if
needed (then please send it to us for inclusion!).

The postfix-main.cf file contains lines that must be added or adjusted in
Postfix’ main.cf configuration file. This bundle does not offer an example
Exim file, please send us your configuration if you use Exim.

You will also find a mailman3.logrotate.conf file to place in your
/etc/logrotate.d directory to ensure rotation of the Mailman logs.

The web interface

The web interface can be made accessible in two ways:

	running as a WSGI application via a dedicated module in your webserver

	running standalone on a different port, and pointed at by a proxy or a proxy
module in your webserver.

This bundle offers a few example configuration files, but it does not cover all
cases. Please send us configuration files for the setups that are not covered
yet.

Log files

In any case, the production.py configuration file defines a directory where
Postorius and HyperKitty logs will be written to. By default, this directory is
/var/log/mailman-web. You will have to create this directory as root,
and then give ownership back to your webserver user.

In the deployment directory you will find mailman-web.logrotate.conf,
an example logrotate file to put in the /etc/logrotate.d directory, to
ensure log rotation both for Postorius and HyperKitty.

Running on Apache HTTPd with mod_wsgi

The apache.conf file is an example configuration file for Apache HTTPd’s
mod_wsgi module that will run Postorius and HyperKitty in the same Django
instance. You will have to adjust the following permissions for your Apache
user on the var/mailman-web directory:

	write access to the SQLite database

	write access to the fulltext_index directory

	read access to the static files.

Running on Gunicorn

To add Gunicorn [http://gunicorn.org] support, just run the following command:

buildout install gunicorn

(it is not enabled by default to minimize dependencies)
You can then serve the Mailman web interfaces with Gunicorn by running the
following command:

./bin/gunicorn mailman_web.wsgi:application

The webserver will listen on port 8000 by default, check out the
Gunicorn documentation [http://docs.gunicorn.org] to change that.

A service file and a socket activation file are provided in the deployment
directory, their basename is mailman-web-gunicorn. You can enable them the
usual Systemd way (with a symlink), but remember to change the User
parameter to a specific user for security.

Please also read the Gunicorn deployment documentation [http://docs.gunicorn.org/en/latest/deploy.html].

Other setups

Those are the only setups this bundle has example configuration for, but
certainly not the only ones supported! We are looking for configuration
examples for the following setups:

	running in uWSGI

	proxy configuration for Apache’s mod_proxy

	proxy configuration for Nginx

	anything else you may be using these days ;-)

 Copyright 2014, Mailman Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	GNU Mailman bundler 3.0.0 documentation

Index

 Copyright 2014, Mailman Developers.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/comment-close.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		GNU Mailman bundler 3.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Mailman Developers.
 Created using Sphinx 1.3.5.

_static/file.png

_static/plus.png

_static/index.html

Redirecting to README.html...

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

